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Abstract

We use daily data to model investors’expectations of U.S. yields, at different maturities and
forecast horizons. We consider two adaptive learning algorithms to characterize the conditional yield
forecasts. Our framework yields the first empirical estimates of the pace of learning by investors.
The superior performance of the endogenous learning mechanism suggests that investors account
for structural change and respond to significant, persistent deviations by modifying the amount of
information they use. Our results provide strong empirical motivation to use the class of adaptive
learning models considered here for modeling and analyzing expectation formation by investors.
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1 Introduction

[T]he Federal Reserve’s ability to influence economic conditions today depends

critically on its ability to shape expectations of the future, specifically by helping

the public understand how it intends to conduct policy over time, and what the

likely implications of those actions will be for economic conditions. (Vice-Chair

Janet Yellen, At the Society of American Business Editors and Writers 50th

Anniversary Conference, Washington, D.C., April 4, 2013)

Investor expectations about the term structure of yields are central to the conduct of

monetary policy. Influencing these expectations through the different instruments available

to the Federal Reserve, has been important during the Great Moderation. During the Great

Recession and its aftermath, this strategy has been at the forefront of the central bank’s

policy. As the accommodative monetary policy stance of the Federal Reserve kept the

federal funds rate at the zero-lower bound from December 2008 to November 2015, one of

the main channels through which monetary policy affected longer yields (and the subsequent

consumption and savings decisions of economic agents), was by affecting the formation of

conditional expectations by market investors.

The contribution of the present analysis is to characterize the expectations formation

process of market investors about the term structure of yields at different forecasting hori-

zons. We further explore whether differences exist in the expectations formation process

between the Great Moderation and the Great Recession periods, i.e., during periods of low

and high macroeconomic volatility. To do this, we develop a novel methodology to model

the evolution of investor beliefs using daily data on the U.S. nominal yield curve. Using

the Great Moderation as the baseline period, we extend the results to include the Great

Recession. Our analysis allows for the comparison of investor beliefs about the entire yield

curve, across a cross-section of forecast horizons.

Our strategy is briefly described as follows: we use the daily yield curve factors estimated

by Gürkaynak, Sack and Wright (2007; henceforth, GSW) to construct yield forecasts. Fol-

lowing recent studies3, we first construct conditional expectations of yields (and associated

latent factors) using a vector auto-regressive (VAR) model with constant coeffi cients. We

evaluate the forecasting performance of the model, and a series of rationality tests of the

3Examples include Diebold and Li (2006) and Aruoba, Diebold and Rudebusch (2006).
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implied forecasting errors confirm that these errors are biased, systematic, and correlated

with revisions in yield forecasts. In addition to these findings on the forecast errors, the

framework also imposes the restriction that investors must be placing identical weights on

past information while forecasting the short and long yields over different forecasting hori-

zons. Thus, it does not allow investors to endogenously adapt to any structural breaks that

they might perceive in the evolution of the average yields, or the yield curve slope.

The above results motivate our hypothesis that market investors are using other models

of expectations formation. Theoretical analyses, such as Piazzesi, Salomao and Schnei-

der (2015) and Sinha (2016), incorporate adaptive learning into the expectations formation

of optimizing agents in models of the yield curve. The implied term structures are more

successful at matching the properties of the empirical yield curve, relative to models with

time-invariant beliefs. Therefore, we explore a class of adaptive learning models for the for-

mation of conditional forecasts of the nominal and real yield curve factors, and subsequent

yields: constant gain learning (CGL) and an endogenous learning (EGL) algorithm that we

develop here. The main innovation is that investors are now allowed to vary the weights

they place on past information about yields; they are also able to adapt to the size of large

and persistent deviations observed in the yield curve factors data.

We find that there are significant improvements in forecasting performance of the model

with the learning processes. Our results are based on the implied forecasts for the two sample

periods, and the methodology characterizes the speed of learning by market investors using

high frequency data, This, to our knowledge, is a first for the adaptive learning literature. The

parameters of the learning models - the updating coeffi cient or the "gain", the adjustment

factor in case of large deviations, and the time period used to compute deviations with respect

to historical data, are all estimated from the daily yield curve data, for different forecasting

horizons. The main result is that at different pairs of yield maturity and forecast horizon, the

endogenous learning forecast improves upon the constant gain algorithm. For example, at

the 1-month forecasting horizon, for the nominal 1-year yield, endogenous learning improves

upon the constant gain mean square forecast error by 36%; at the 6-month horizon, the

improvement is close to 18%. This improvement in the performance persists across yield

maturities as well.

We investigate the forecasts obtained from the learning models on two separate dimen-

sions. First, we subject the forecast errors to the same set of rationality tests, as done for
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the constant-coeffi cients model. The results show that forecast errors from both the learn-

ing models improve upon the findings for the time-invariant case: the errors are unbiased

(or significantly less so), the predictive content of current forecasts for the errors is either

insignificant or much reduced, and systematic nature of the forecast errors is also greatly

diminished for the 1- and 10-year yields. Thus, we conclude that the forecast errors of the

learning model improve upon those from the constant-coeffi cients model.

We then test whether the out-of-sample learning forecasts improve upon random walk

forecasts4. Since yields are very persistent, the random walk model is diffi cult to out-perform

in these out-of-sample forecasts. At the shortest forecasting horizon (1-month), we find that

this is still the case. However, at the longer forecasting horizons, the learning models improve

upon the random walk forecasts. For example, the EGL 6-month forecast for the 10-year

yield improves upon the random walk model by approximately 13%.

In addition to the superior performance of the EGL mechanism on the above dimensions,

the estimation of the endogenous gain parameters yields several insights into the expectations

formation process of agents: (a) the implied conditional expectations of investors display

substantial time-variation and adapt to large deviations in the data during periods of low and

high macroeconomic volatility (we present estimates of the gains from the Great Moderation

as well as the Great Recession to demonstrate this); (b) while constructing forecasts of

the 10-year yield, the investors’ expectations are largely invariant to large deviations in

the observed data, and they account for structural change to a significantly smaller degree,

relative to the 1- and 5-year yields, during the Great Moderation. This contrasts with the

expectations formation during the Great Recession, where the 1- and 3-month forecasts of

the 10-year nominal yield give more weight to the more recent level and slope factor data.

This suggests that during periods of low macroeconomic volatility, investors do not expect

structural change in the data for the long-term yield, but become much more attentive

during highly volatile periods. Thus, monetary policy actions that target the long-end of

the yield curve during a recession may be more successful at influencing the savings and

investment decisions of agents. This result supports findings elsewhere in the literature:

for example, Coibion and Gorodnichenko (2015) find that survey forecasters exhibit greater

information rigidities during the Great Moderation, compared to the earlier recessions. Using

4In the accompanying appendix, we also compare the learning forecasts with those of the Diebold-Li
(2006) model.
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observed data on the yield curve, we show that investors are, in fact, forming conditional

expectations differently over the business cycle. Thus, the mechanism offers a tractable way

of incorporating time-variation in expectations formation, and can aid in policy analysis: less

attention to more recent data during recessions (for different yield maturities and forecast

horizons) indicates that investors will less more rapidly to policy changes during recessions.

Our methodology allows for investors to allow the gains to vary across different yield

curve factors and across forecast horizons; this provides a more intuitive way to allow for the

investors to update their information. For example, while forming forecasts, the investors

may place more or less weight on the history of the level of yields, than on the slope of the

yield curve. If they believe that there were several structural breaks in the average level of

the yield curve, they may prefer to place more weight on the recent past observations, instead

of the longer history. If such breaks are not perceived to exists in the yield curve slope, the

investors may place almost equal weight on past observations. These gain parameters are

therefore central to the bounded rationality approach, since they determine the persistence in

expectations formation, and how investors will react to permanent versus transitory shocks.

In this analysis, we use fixed baseline time periods (for the Great Moderation and the Great

Recession period) to find the optimal gains.

Given the success of the endogenous learning mechanism in modeling conditional forecasts

of investors, we then consider the implications of our framework for two important aspects

of the term structure of interest rates: first, what are the inflation expectations implied by

the endogenous learning model? Second, how far does the EGL mechanism go in matching

the patterns observed in survey data and other data on expected excess returns?

Inflation expectations for 5- and 10-years at different forecast horizons, are derived using

the difference between the conditional expectations of the nominal and corresponding TIPS

yields. We find that up until the middle of the 2006, the 1-, 3- and 6-month inflation

expectations kept pace with each other. However, by the beginning of 2007, there was a

significant divergence in the inflation expectations for the 1- month relative to the others.

The period at the start of the financial crisis was also marked by an enormous increase in the

uncertainty of inflation expectations, both for the 5- and 10-year yields. We further consider

the correlations of the inflation expectations obtained from the endogenous learning model

with two measures of inflation expectations - the model-based inflation expectations derived

by the Federal Reserve Bank of Cleveland, and the 10-year inflation expectations from the
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Survey of Professional Forecasters (SPF).

To examine the implications for excess returns, we first use survey data from the SPF

to derive the excess returns for ten-year nominal yields at different forecasting horizons.

The excess returns are then constructed in a similar manner from the learning models.

The endogenous learning mechanism shows a higher correlation with survey expected excess

returns, relative to the constant gain mechanism. We also construct expected excess returns

from the Cochrane and Piazzesi (2005) model, and compute the correlations of the learning

model-implied excess returns with this model’s excess returns.

This paper is organized as follows: section two gives a brief overview of the literature.

The factor model for the nominal yield curve, and tests for systematic relationships between

the forecast errors and revisions are described in section three. Section four discusses the

different learning mechanisms and section five presents the numerical results, along with a

discussion of the optimization routines. We also discuss the findings in the context of other

endogenous learning mechanisms here. Further tests of the learning model are discussed in

section six, including comparisons with the random walk model. The findings for inflation

expectations and expected excess returns are described in section seven and section eight

concludes.

2 Related Literature

Several analyses have used the Nelson-Siegel-Svensson parameterization for fitting the yield

curve. The U.S. nominal yield curve data used here is drawn from the yield curves estimated

by GSW (2007) based on this spline approach. There are other widely-used frameworks for

modeling the term structure as well.5 However, the focus of the present paper is to extract

the process which best approximates the evolution of the yield curve factors, instead of

analyzing different models of yield curve estimation. Thus, we choose a flexible, parsimonious

5For example, Aruoba, Diebold and Rudebusch (2006) estimate the yield curve using the Nelson-Siegel
approach, and estimate the evolution of the yield and factor jointly. Diebold and Li (2006) propose a
dynamic version of the approach. These analyses use the original three-factor model of Nelson and Siegel
(1987). The Svensson (1994) model extends this framework and incorporates additional flexibility in the
shape of the yield curve. A survey of the different models of the term structure and their relative forecasting
performances is conducted by Pooter (2007). A more recent approach has introduced the restrictions used
in affi ne arbitrage-free models of the term structure, which suffer from poor forecasting performance, into
the spline based methods (Christensen, Diebold and Rudebusch, 2011).
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framework that is widely used for modeling the term structure, and analyze the conditional

forecasts implied by this approach.

Our study is related to the recent work that has introduced time variation in the estima-

tion of yield curve forecasts. Bianchi, Mumtaz and Surico (2009) model the U.K. nominal

yield curve using the Nelson-Siegel-Svensson approach; the authors also use a time-varying

process for the evolution of the factors. In their model, a regime-switching model for the evo-

lution of the factors is specified. Duffee (2011) develops a three-factor term structure model,

in which the factors are the first three components of yields. A random walk on the first prin-

cipal component (corresponding to the level) is imposed; the other two factors are assumed

to be stationary. Van Dijk, Koopman, Wel and Wright (2014) also impose non-stationarity

on the level component of the Nelson-Siegel model, wherein the authors consider autoregres-

sive specifications with a time-varying unconditional mean or a "shifting endpoint". They

present three approaches to model the shifting endpoint: exponential smoothing; survey

forecasts of interest rates, output and inflation and exponentially smoothed realizations of

the macroeconomic variables. Both the latter papers establish the superior performance of

the respective time-varying models in out-of-sample yield forecasts. While the motivation

of the present analysis is similar, we allow for time-varying coeffi cients in all the factors in

the term structure model. This allows us to investigate whether the importance of the yield

curve level vis a vis the slope remains the same across different periods and forecast hori-

zons. Also, the investors are assumed to entirely rely on the yield curve time series, without

assuming a specific form of dependence on different macroeconomic variables. The focus

of the present exercise is to characterize investor expectations about the different aspects

of the yield curve. While we present the in-sample forecasting errors below, out-of-sample

forecasting is not the main objective of the analysis.

Recent analyses have also investigated the forecasting performance of the Nelson-Siegel

model with time-varying models. Starting with the dynamic Nelson-Siegel model, Chen and

Niu (2014) construct forecasts of yields by optimally selecting the sample period over which

parameters are approximately constant for the factor dynamics. The constructed adaptive

dynamic Nelson-Siegel (ADNS) model constructed by the authors results in better forecasts

of the yield curve compared with the dynamic Nelson-Siegel model. The algorithm is able to

detect structural breaks in the factor series, and this leads to the improvements in forecast

performance. Xiang and Zhu (2013) develop a regime-switching version of the dynamic
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Nelson-Siegel model. In this framework, latent yield factors are assumed to follow a Markov-

switching VAR process, and the optimal number of regimes (found to be two regimes based

on daily U.S. Treasury yield data) are determined in the estimation process. The two-regime

Nelson-Siegel model is found to generate superior yield forecasts, especially at the shorter

end of the yield curve. Although forecasting performance is not the focus of the present

analysis, our work is related to both these studies as we also posit that the investors are

forming expectations using a time-varying coeffi cients model.

In order to discipline the time-varying parameters in our analysis, we use variants of

the adaptive learning algorithm. Other analyses have incorporated the adaptive learning

framework in the optimizing agents’expectations formation to derive the yield curve in par-

tial and general equilibrium models, to improve the fit of the model relative to empirical

observations of the term structure. Laubach, Tetlow and Williams (2007) allow investors to

re-estimate the parameters of their term structure model —both those determining the point

forecasts of yields, and the parameters describing economic volatility —based on incoming

data. Kozicki and Tinsley (2001) and Dewachter and Lyrio (2006) use changing long-run

inflation expectations as an important factor characterizing the yield curve. Fuhrer (1996)

finds that estimating changing monetary policy regimes is important for the success of the

Expectations Hypothesis of the term structure. Piazzesi, Salomao and Schneider (2015) de-

compose expected excess returns into the returns implied by the statistical VAR model and

survey expectations, used as an approximation for subjective investor expectations. Survey

expectations are found to be significantly more volatile compared to model implied returns.

Giacoletti, Laursen and Singleton (2014) estimate a dynamic term structure model in which

the investor learns about the joint distribution of the yield curve and the macroeconomy.

The common theme of these analyses is the incorporation of subjective beliefs in explaining

characteristics of the empirical term structure. The distinguishing feature of our analysis is

we use the term structure data to estimate the process that produces the best in-sample fore-

casts at different forecast horizons and maturities, to approximate the expectations process

of agents. We also allow the investors to endogenously learn from their past errors.6

While the above mentioned analyses have primarily used constant-gain adaptive learn-

6In contrast, the analysis of Piazzesi, Salomao and Schneider (2015) directly imposes the constant-gain
learning model on the expectations formations process of optimizing agents, and analyzes the subsequent
forecasts. In this case, investors form beliefs over different forecast horizons and yield maturities using the
same updating parameter.
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ing, endogenous learning algorithms have also been previously incorporated by Marcet and

Nicolini (2003) and Milani (2007a). In the former analysis, the authors incorporate bounded

rationality in a monetary model; the agents switch between using a constant gain and a

decreasing gain algorithm. They are successfully able to explain the recurrent hyperinflation

across different countries during the 1980s. One of the main contributions of this analysis is

to present a tractable endogenous gain algorithm, in which the optimizing agents are able to

adjust their gain parameters in response to significant deviations from the historical mean.

Here, the size of the gain responds to the deviations; in Milani (2007a), the agents switch

between constant gains based on the historical average of the forecasting errors. Our work

is closely related to Gaus (2014), who proposes a variant of the endogenous gain learning

mechanism, in which the agents adjust the gain coeffi cient in response to the deviations in

observed coeffi cients. Kostyshyna (2013) develops an adaptive step-size algorithm to model

time-varying learning in the context of hyperinflations.

3 Factor Model and the Performance of Implied Yield

Forecasts

GSW (2007) model the zero-coupon yield curve for 1972 − 2011 using the Nelson-Siegel-

Svensson approach:

ynt = β0 + β1

1− exp
(
−n
τ1

)
n
τ1

+ β2

1− exp
(
−n
τ1

)
n
τ1

− exp

(
−n
τ 1

) (1)

+β3

1− exp
(
−n
τ2

)
n
τ2

− exp

(
−n
τ 2

) .
Here ynt is the zero-coupon yield of maturity n months at time t, β0 approximates the level

of the yield curve, β1 approximates its slope, β2 the curvature and β3 the convexity of the

curve. The latter captures the hump in the yield curve at longer maturities (20 years or

more). When β3 = 0, the specification in (1) reduces to the Nelson-Siegel (1987) form. This

functional form is a parsimonious representation of the yield curve.7 The estimates for this

7See Pooter (2007) for an overview of the methods and forecast comparison.
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nominal curve are updated daily, and are available from January 1972 on the Federal Reserve

Board website. The parameters in (1), which are β0, β1, β2, β3, τ 1 and τ 2, are estimated

using maximum likelihood by minimizing the sum of squared deviations between the actual

Treasury security prices and the predicted prices.8 In our analysis below, we will be using

these daily factors estimated by GSW.

To construct yield forecasts using the representation in (1), it must be amended with a

process for the evolution of the factors9:

yt = Xtβt + εt (2a)

βt = µ+ Φβt−1 + ηt. (2b)

Here yt is the n × 1 vector of yields, Xt is a n × 4 vector of the regressors in (1), βt is a

4 × 1 vector of the factors, µ is the intercept and Φ denotes the dependence of the factors

on past values. Since the parameters τ 1 and τ 2 are jointly estimated using the maximum

likelihood approach, the Xt vector is time-varying. Also, var(εt) = H is a diagonal n × n
matrix, and var(ηt) = Q is a 4 × 4 diagonal matrix. The factor errors are assumed to be

distributed as a normal, with mean zero.10 We will consider this as the benchmark model

for factor evolution.

The forecasts of the yields are constructed as follows:

Etyt+h = EtXtβ̂t+h = XtEtβ̂t+h (3a)

Etβ̂t+h =
[
I4 − Φ̂h

] [
I4 − Φ̂

]−1

µ+ Φ̂hβt, (3b)

where h is the forecast horizon. Here, the second equality in (3a) holds since we use estimated

values of the parameters τ 1 and τ 2 at time t, while forming the conditional forecasts.

8The prices are weighted by the inverse of the duration of the securities. Underlying Treasury security
prices in the Gürkaynak, Sack and Wright estimation are obtained from CRSP (for prices from 1961 - 1987),
and from the Federal Reserve Bank of New York after 1987.

9This is the two-step estimation of yields and factors (Diebold and Li (2006) and Aruoba, Diebold and
Rudebusch (2006)).
10In the estimation, the cross covariances in ηt are set to zero.
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3.1 Tests of the Forecast Errors

Since the model for factor evolution in (2b), and implied conditional yield forecasts in (3a)

have been widely used in the literature, we first test the forecast errors implied by this

framework. The underlying hypothesis in these analyses is that the framework in (2b) is the

"true" model for factor evolution. In this case, the forecasts of yields would be rational; that

is, they satisfy the null hypotheses of unbiasedness and effi ciency. Thomas (1999) presents

a survey of the literature that examines the rationality of inflation forecasts reported by

different surveys, and these tests are used to analyze the rationality of the forecasts from the

benchmark model. For the following tests, the sample period from 1985−2000 is considered.

The forecasts are constructed for the next four years, using a rolling data window. At each

step, the 1-, 3- and 6-month ahead forecasting errors are constructed. This exercise uses

data at the daily frequency, and the forecast errors at maturity n and horizon h are defined

as the difference between the realized yields, and the conditional expected yields from (3a).

3.1.1 Are the Forecast Errors Unbiased?

In order to test whether the model specification in (2b) leads to unbiased forecasts, the

following regression is considered:

ynt+h − Etynt+h = αn + ent,t+h, (4)

for forecast horizons h = 1, 3 and 6 months.11 Here Etynt+h is the expectation at time

t of the yield of maturity n, h periods into the future. The errors corresponding to the

regressions for different yield maturities are denoted by en1t. The coeffi cients for the different

yield maturities and forecast horizons are shown in the first panel of table 1. The null

hypothesis of unbiasedness requires αn1 = 0,∀n. The coeffi cients in this panel show that for
the 1-year yield maturity, as the forecast horizon increases, the implied conditional forecasts

of yields overshoot the realized yields. For the 5- and 10-year yields, the model undershoots

the implied yields, but as the forecast horizon increases, the conditional forecasts are larger

than the actual yields.

11This is equivalent to the specification considered by Thomas (1999), and is used by Mankiw, Reis and
Wolfers (2004).

11



3.1.2 Are the Forecast Errors Effi cient?

We test whether there is information in the forecast of the yields which can help to predict

the forecast error:

ynt+h − Etynt+h = αn + βnEty
n
t+h + ent,t+h. (5)

Under the null hypothesis, αn = 0 and βn = 0. This implies that the forecasts themselves

have no predictive content for forecast errors. The coeffi cients in the second panel of table 1

show that this hypothesis is rejected for the yield maturities considered, across the different

forecast horizons.

3.1.3 Are the Forecast Errors Systematic?

If (2b) is the true model for the evolution of the factors, then the implied yield forecasts

must correspond to the "true" forecast. In this case, the forecast errors must be uncorrelated

with the revision in forecast yields. That is, in the following regression:

ynt+h − Etynt+h = αn + βn
(
Ety

n
t+h − Et−1y

n
t+h

)
+ ent,t+h (6)

the intercept and slope coeffi cients must be statistically not different from zero.12 The coeffi -

cients from the regression in (6) are reported in the third panel of table 1. Several patterns of

interest emerge from the coeffi cient estimates. The slope coeffi cients are statistically different

from zero, implying that the ex-post forecast errors are systematically predictable from the

ex-ante forecast revisions. There is also a qualitative difference in how the forecast errors

respond to forecast revisions at various horizons. At the longest forecast horizon considered,

the slope coeffi cient is positive, implying that the yield forecasts implied by the model were

lower than observed yields.

12This is similar to the test used by Coibion and Gorodnichenko (2012) as a test for full-information
rational expectations. The authors map the estimates of the slope coeffi cients which they obtain from a
regression of inflation forecast errors on the inflation forecast revisions in survey data to theoretical models
of asymmetric information.
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Yield h = 1 month h = 3 months h = 6 months

Maturity α β α β α β

Test 1: yt+h − Etyt+h = α + errort

1 year -2.1764
(0.04)

- -3.5495
(0.05)

- -5.2820
(0.08)

-

5 years 0.6366
(0.02)

- -0.5364
(0.03)

- -1.9979
(0.05)

-

10 years 1.9427
(0.02)

- 0.7984
(0.03)

- -0.6240
(0.04)

-

Test 2: yt+h − Etyt+h = α + βEtyt+h + errort

1 year 1.8125
(0.12)

-0.9225
(0.02)

2.4473
(0.12)

-1.0533
(0.02)

3.1419
(0.10)

-1.1353
(0.01)

5 years 2.3957
(0.04)

-0.5669
(0.01)

2.5063
(0.06)

3.7128
(0.03)

3.0019
(0.07)

-0.8723
(0.01)

10 years 3.8036
(0.02)

-0.6499
(0.00)

-0.5364
(0.03)

-0.7276
(0.00)

3.8714
(0.04)

-0.8286
(0.00)

Test 3: yt+h − Etyt+h = α + β (Etyt+h − Et−1yt+h) + errort

1 year -0.0000
(0.00)

3.0649
(0.02)

0.0357
(0.00)

0.5958
(0.00)

0.0496
(0.00)

0.7051
(0.00)

5 years 0.0489
(0.00)

-0.5694
(0.02)

0.0505
(0.00)

0.1743
(0.00)

0.0539
(0.00)

0.3776
(0.00)

10 years 0.0801
(0.00)

-2.4728
(0.02)

0.0818
(0.00)

-0.0691
(0.00)

0.0722
(0.00)

0.1809
(0.00)

Table 1: Testing Forecast Errors for Nominal Yield Curve Factors

Note: The above coeffi cient estimates are reported using daily data on the latent factors, for

the period 1985-2000. The standard errors are shown for the corresponding coeffi cients in brackets.

These coeffi cients are statistically significant at the 5% level.
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3.1.4 Forecast Errors from the Survey Data

For comparison, it is useful to analyze the performance of expectations of yields reported

by the Survey of Professional Forecasters (SPF) using the above tests. SPF data on median

forecasts of the 10-year Treasury yield and 3-month Treasury bills are available. We con-

struct the regressions in (4), (5) and (6) using the forecasts at the 6- and 12-month forecast

horizons.13 The results are shown in three panels in table 2. The null of unbiasedness is

strongly rejected for the 3-month Treasury bills. The median forecasts of the Treasury bills

and the 10-year bonds are found to have strong predictive power for the forecast errors, and

the forecast revisions are related to the forecast errors in a statistically significant manner.14

13This regression is constructed using the monthly forecasts reported by the SPF.
14SPF forecasts are only available monthly, and the expectations are reported at the quarterly horizons.
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Yield h = 3 months h = 1 year

Maturity α β α β

Test 1: yt+h − Etyt+h = α + errort

T-bill -0.1288∗∗∗
(0.05)

- -0.2305
(0.18)

-

10 year -0.1220
(0.09)

- -0.2305
(0.18)

-

Test 2: yt+h − Etyt+h = α + βEtyt+h + errort

T-bill 0.3201∗
(0.19)

-0.0794
(0.03)

∗∗ 6.8827
(1.17)

∗∗∗ -1.1136
(0.18)

∗∗∗

10 year 2.0809
(0.77)

∗∗∗ -0.3472∗∗∗
(0.12)

Test 3: yt+h − Etyt+h = α + β (Etyt+h − Et−1yt+h) + errort

T-bill -0.1040
(0.04)

∗∗ 0.3636∗∗∗
(0.09)

−0.2135
(0.18)

−0.3735
(0.48)

10 year -0.1209
(0.10)

0.2493
(0.21)

Table 2: Testing Forecast Errors for SPF Data

Note: The SPF median forecasts are reported monthly, and data from 1992Q2-2002-Q4 is used

here. *** denotes significance at the 1% level, ** at the 5% level and * at the 10% level

4 Construction of Yield Forecasts under Alternative

Learning Models

In this section, investors are allowed to update their estimates of the parameters (µ,Φ), as

new information becomes available. That is, in contrast to (2b), this process is represented
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using a time-varying VAR model (with the coeffi cients being updated using different learning

schemes):

βt = µt−1 + Φt−1βt−1 + ηt. (7)

The timing is as follows: at time t, the GSW estimates of (β0, β1, β2, β3, τ 1, τ 2) are used,

and to construct forecasts of the yields at 1-, 3- and 6-month horizons, the investors use the

learning processes described below to determine (µt,Φt). Once the parameters (µt,Φt) are

estimated, they are used for constructing the conditional yield forecasts.At time t + 1 the

process is repeated, and updated estimates of (µt+1,Φt+1) are used to construct the forecasts

of yields and corresponding forecast errors. For each factor βi, i ∈ {0, 1, 2, 3}, the coeffi cients
Ωi,t =

(
µi,t,Φi,t

)
are updated as:(
µi,t

φi,t

)
=

(
µi,t−1

φi,t−1

)
+ giR

−1
i,t−1qi,t−1

[
βi,t −

(
µi,t−1

φi,t−1

)′
qi,t−1

]
(8)

Ri,t = Ri,t−1 + gi
[
qi,t−1q

′
i,t−1 −Ri,t−1

]
where qi,t−1 =

(
1, βi,t

)′t−1

t=0
, gi is the weight the investors assign to the forecast errors made and

βi,t is the latent factor derived at time t using the maximum likelihood procedure. Finally,

the forecasts of the yields are given by:

Etyt+h = XtEtβ̂t+h (9)

Etβ̂t+h =
[
I4 − Φ̂h

t−1

] [
I4 − Φ̂t−1

]−1

µt−1 + Φ̂h
t−1βt.

The only distinction from (3a) is that the coeffi cients (µt,Φt) are updated over time. We

make the assumption that while making conditional forecasts at time t, the investors do not

allow for the possibility that they will revise their estimates of (µ,Φ) .15 The two updating

schemes that we consider are described below.

4.1 Constant gain learning

With constant gain learning (CGL), the gain parameter g is fixed. CGL has been a widely

used method for characterizing the expectations formation for optimizing agents. In contrast

15This is the anticipated utility assumption (Kreps, 1988).
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to the constant-coeffi cients model, investors can now allow for structural changes in the

data they are forecasting, by placing an exponentially decaying weight on the history of

observations. However, this process does not allow them to modify the weights they place

on past data, in case they observe actual data realizations that are significantly different.

That is, at any point in time, the agents will continue to place the same weight on an

observation n quarters ago, that they did before. Due to this characteristic of CGL, the

technique is limited in explaining the behavior of macroeconomic variables, such as the high

inflation in 1970s, and the subsequent behavior of the series during the Great Moderation.

These observations motivate us to propose the following learning techniques.

4.2 Endogenous gain learning

Under endogenous learning, the investors continue to use the law of motion for the factors

in (7), along with the updating equation in (8). However, the gain is no longer held fixed

for the entire sample. Under endogenous learning (EGL) the gain switches according to the

specification below:

gt = ḡlb + ḡsf

∣∣∣Ωt−Ω̄k
σΩ

∣∣∣
1 +

∣∣∣Ωt−Ω̄k
σΩ

∣∣∣ . (10)

Here Ω̄ is the average of the k most recent coeffi cients and σΩ is the standard deviation of

these k coeffi cients. The lower bound of the endogenous gain is ḡlb, and ḡsf is the scaling

factor. In this variant of endogenous learning, if the recent coeffi cient estimate (Ωt) is close

to the mean (Ω̄k), then gt = ḡlb. However, as the realization of Ωt diverges from Ω̄k, the

gain approaches ḡlb +ḡsf . Therefore, as long as ḡsf < 1 and ḡlb +ḡsf < 1, gt will be bounded

between zero and one. The novel feature of this learning mechanism is that it allows the

investors to endogenously switch or adjust their beliefs and permits them to change the

weights they place on past data, in response to new information. Investors are allowed

to increase or decrease the value of the gain in times when their coeffi cient estimates are

different from the recent past; the size and sign of this adjustment will be determined in the

estimation below. This algorithm was originally developed in Gaus (2014). The comparative

numerical results below are presented for the CGL and gain specification following (10). The

estimation of the gain parameters for (8) and (10) are discussed below in section 5.1 below.

It is useful to note here that this algorithm allows investors to place greater (or smaller)
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weight on new information in periods of large deviations, and therefore vary the degree to

which they are becoming more (or less) attentive to the recent data is estimated from the

yield curve data. In our estimation strategy (described in section 5.1 below), parameters ḡlb,

ḡsf and k are estimated from the baseline period. Thus, if the data implies that investors

pay the same attention to the past data in periods of large deviations as "normal" times,

then the endogenous learning algorithm will be flexible enough to accommodate this.

The EGL can be further understood in the context of the learning rule adopted by Marcet

and Nicolini (2003). In that exercise, the learning mechanism is one in which decreasing

gain (or standard least squares learning) is used in stable periods, and the agents switch

to using constant gain in periods of "instability". Thus, the expectations formation process

is endogenous to the model, which successfully accounts for recurrent hyperinflations in

the 1980s. Recent work by Carvalho, Eusepi, Moench and Preston (2015) uses a learning

mechanism similar to the Marcet and Nicolini (2003) setup to explain the behavior of long-

run inflation expectations in the United States; the authors are able to successfully explain

why inflation expectations became unanchored in the 1970s. In the EGL framework of the

present paper, a similar strategy is followed, but now the agents are also able to adjust the

size of the gain parameter to the magnitude of the instability.

5 Evaluation of the Models and Implications for In-

vestor Expectations

There are three aspects of investor expectations that we will analyze. First, for a fixed

yield maturity, how do investors form conditional forecasts over different forecasting hori-

zons? That is, do they hold their beliefs constant while making forecasts over the short-

and medium-term, or do the beliefs depend on the forecasting horizon? Second, when the

forecasting horizon is held constant, do investors keep their beliefs constant while making

forecasts about the one- and ten-year yields, or are these beliefs varying? Finally, we explore

the expectations formation process for real yields using data on Treasury Inflation Protected

Securities (TIPS), and investigate if these are substantially different from the analogous

processes for nominal yields. The results presented below will provide a framework for ana-

lyzing the beliefs of investors on these dimensions.
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We first consider the performance of the different models of expectations formation for

the Great Moderation period, and the analysis is later expanded to compare forecasts for

the Great Recession. The models’forecasting performance is evaluated by comparing their

mean square forecast errors (MSFEs), and then the implications of these results for modeling

investor expectations are discussed. The sample period for nominal yields is January 1980

to December 1992. The in-sample forecasts are constructed for the one-, five- and ten-year

yields, at the one-, three- and six-month horizons. These horizons are set to match (on

average) the number of trading days. For example, for constructing the one-month ahead

forecast, the number of days is set at 21. Before discussing the model evaluation across

different time periods in section 5.2 below, we describe the mechanism used to compute the

optimal gains used in the different learning mechanisms.16

Finally, we investigate the performance of the learning model on two other dimensions

in section 6 below: we compare the out-of-sample learning forecasts relative to the random

walk model17, and analyze the learning model-implied forecast errors using the tests from

section 3.1.

5.1 Determination of the Gain Parameters

In order to allow investors to update their coeffi cients of Ωt, using the constant-gain algo-

rithm described above, the initial values of the gain parameters must be set. We allow the

investors to use different gains for the four latent factors18. Thus, the investors are no longer

constrained to using the same gains for the level, slope and curvature of the yield curve. For

the Great Moderation period, the sample period from January 1980 to December 1992 is

used to find the optimal constant gain, as well as the parameters of the endogenous learning

process, for the latent factors. These are shown in table 319 for the three different forecasting

horizons and the 1-year yield. The gains for the 5- and 10-year yields are shown in tables 4

and 5 respectively. To analyze the implications for the Great Recession period, the baseline

16In section 6.2 below, we also present the out-of-sample forecasts of the learning models, relative to the
random walk model.
17Performance relative to the Diebold-Li (2006) model is also explored in the appendix.
18The corresponding initial values are available upon request
19These values are at the lower end of the gain values used in the literature. For example, Eusepi and

Preston (2013) use a gain of 0.002 in a RBC model, while Milani (2007b) estimates a gain of 0.02 using a
DSGE model for the U.S. economy. However, these analyses use quarterly data, in contrast to the daily time
series used here.

19



period used to estimate the values of the learning parameters is July 2006 to June 2009

The optimization routine minimizes the root mean squared forecasting error over the

parameters of the learning processes in (8) and (10). For the constant gain algorithm, this

is gi, for i = {0, 1, 2, 3}, and for the endogenous learning algorithm, k, ḡlb and ḡsf for the
different factors. Optimal values of the parameters are estimated for each of the three

forecasting horizons (1, 3 and 6 months). To our knowledge, our paper is the first to provide

estimates of the gain parameter, using macroeconomic data observed at a daily frequency

and varying forecast horizons. Given the superior performance of the EGL mechanism shown

in section 5.1.1 below, we concentrate on discussing the pattern in the gain parameters for

this process here.

We note that at the shortest forecasting horizon (1 month), the investors adjust their

gain on the level factor to pay more attention on the recent observations for the 1- and 5-year

yields. Data on the slope is less heavily weighted for the 1-year and weighted more for the

5-year yield. For longer forecast horizons (3- and 6-months), the pattern is reversed for the

1-year yield. For the 5-year, the adjustment factor remains positive for these horizons. That

is, investors become more attentive to the recent observations of the yield curve slope factor.

The other main finding is that the gains are negligible for the level and slope factors for the

10-year yield at the 1- and 3-month forecast horizons. This implies that investors are not

changing their beliefs or not accounting for structural changes while forecasting at the long

end of the yield curve. For the remaining two factors, the predominant trend is that while the

lower bound gain in the EGL mechanism is positive, the adjustment factor is substantially

negative: that is, in periods of large deviations, the investors appear to be paying very little

attention to the more recent data. This exercise suggests that monetary policy actions,

which target the short or long end of the yield curve, will have asymmetric effects on the

conditional yield forecasts made by market investors. If investors are not weighting the recent

observations of the yield curve level and slope for constructing their forecasts of the 10-year

yield, then the monetary authority will need to take this into account to determine the effects

of the policy action on their long-term savings and investment decisions. As shown in the

first column of 5, the constant gain algorithm will be unable to capture this dimension of

investor expectations.

During the Great Recession, we find that the ḡlb parameter of the EGL scheme is lower for

the different factors at the various forecast horizons for the 1- and 5-year yields. The scaling
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factor, ḡsf , is also close to zero or negative to the different yield maturity and forecasting

horizon pairs. These estimates suggest that during periods of high volatility, market investors

pay much less attention to the recent observations, and this pattern is magnified during

periods of large deviations (ḡsf is negative). We also note that for the 1-month horizon,

the endogenous gains are substantially lower than the constant gain counterparts. The gain

parameters corresponding to the slope and curvature factor for the 10-year yield, however, are

found to be larger than their counterparts for the Great Moderation. These findings suggest

that during the Great Recession, investors were more attentive to the recent observations

for the yield curve slope and curvature factors while forecasting the long-term yield. Thus,

policy actions at the long end of the term structure may have been more effective in affecting

investor expectations. This finding is similar to the Swanson and Williams (2014) hypothesis

that medium- and long-term yields continued to respond to macroeconomic news even after

the zero-lower bound was put in place.
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Optimal Values of Gain Parameters

Great Moderation Great Recession

Factors CGL EGL CGL EGL

ḡ ḡsf k ḡ ḡsf k

Forecasting horizon h = 1 month

β0 0.052 0.114 0.008 19 0.122 0.042 0.003 19

β1 0.040 0.124 -0.009 19 0.112 0.020 -0.006 19

β2 0.108 0.017 0.061 19 0.122 0.051 -0.019 19

β3 0.108 0.242 -0.242 19 0.126 0.053 0.004 19

Forecasting horizon h = 3 months

β0 0.118 0.128 -0.010 54 0.079 0.087 -0.000 57

β1 0.115 0.118 0.023 54 0.081 0.096 -0.006 57

β2 0.121 0.108 0.027 54 0.078 0.076 0.010 57

β3 0.120 0.131 -0.020 54 0.055 0.088 -0.015 57

Forecasting horizon h = 6 months

β0 0.110 0.117 -0.033 115 0.014 0.012 0.003 114

β1 0.110 0.099 0.045 115 0.017 0.013 0.005 114

β2 0.115 0.231 -0.231 115 0.065 0.066 -0.048 114

β3 0.117 0.234 -0.234 115 0.012 0.018 -0.011 114

Table 3: Optimal Values of the Gain Parameter

Note: These are the optimal gain values for constant gain (CGL) and endogenous gain (EGL),

for the one-year yield, for the two sample periods.
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Optimal Values of Gain Parameters

Great Moderation Great Recession

Factors CGL EGL CGL EGL

ḡ ḡsf k ḡ ḡsf k

Forecasting horizon h = 1 month

β0 0.039 0.110 0.010 17 0.029 0.000 0.006 20

β1 0.075 0.111 0.020 17 0.040 0.009 -0.007 20

β2 0.108 0.192 -0.150 17 0.009 0.000 0.020 20

β3 0.095 0.239 -0.239 17 0.050 0.023 0.006 20

Forecasting horizon h = 3 months

β0 0.026 0.141 -0.023 59 0.000 0.000 0.000 52

β1 0.058 0.119 0.027 59 0.002 0.036 0.004 52

β2 0.119 0.120 0.005 59 0.002 0.083 0.016 52

β3 0.118 0.125 -0.005 59 0.003 0.008 0.006 52

Forecasting horizon h = 6 months

β0 0.083 0.094 -0.022 119 0.000 0.000 0.005 124

β1 0.122 0.117 0.005 119 0.003 0.017 -0.006 124

β2 0.110 0.131 -0.115 119 0.002 0.000 0.004 124

β3 0.122 0.237 -0.235 119 0.010 0.009 0.009 124

Table 4: Optimal Values of the Gain Parameter

Note: These are the optimal gain values for constant gain (CGL) and endogenous gain (EGL),

for the five-year yield, for the two sample periods.
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Optimal Values of Gain Parameters

Great Moderation Great Recession

Factors CGL EGL CGL EGL

ḡ ḡsf k ḡ ḡsf k

Forecasting horizon h = 1 month

β0 0.000 0.000 0.000 7 0.000 0.000 0.008 10

β1 0.004 0.000 0.018 7 0.189 0.219 -0.024 10

β2 0.108 0.000 0.046 7 0.004 0.185 -0.015 10

β3 0.095 0.213 -0.200 7 0.029 0.166 0.022 10

Forecasting horizon h = 3 months

β0 0.000 0.000 0.000 62 0.000 0.000 0.005 59

β1 0.003 0.000 0.008 62 0.004 0.087 -0.001 59

β2 0.119 0.055 0.139 62 0.003 0.086 0.017 59

β3 0.118 0.176 -0.106 62 0.060 0.005 0.006 59

Forecasting horizon h = 6 months

β0 0.000 0.000 0.000 111 0.000 0.000 0.006 112

β1 0.122 0.117 0.005 111 0.004 0.019 -0.006 112

β2 0.108 0.000 0.029 111 0.003 0.089 0.043 112

β3 0.122 0.238 -0.238 111 0.024 0.036 0.018 112

Table 5: Optimal Values of the Gain Parameter

Note: These are the optimal gain values for constant gain (CGL) and endogenous gain (EGL),

for the ten-year yield, for the two sample periods.

5.2 Model Evaluation

We examine the evolution of expectations during the Great Moderation and the Great Re-

cession, as well as analyze the implications of using yields from Treasury Inflation Protected

Securities.
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5.2.1 Investor Expectations during the Great Moderation

A comparison of the two learning models, on the basis of the MSFEs derived from the in-

sample conditional yield forecasts is presented in table 6. The statistical significance of the

difference in forecasts is constructed using the Diebold-Mariano (1995) statistic. The null

hypothesis of the test statistic is that there is no difference in the forecast accuracy of the

two competing models; a rejection of the null implies that the two forecasting models have

statistically different forecasting performances. The dominant trend evident from table 6

is that the MSFEs from the endogenous learning model are lower than those derived from

constant gain at all forecasting horizons and yield maturities. This indicates that the market

investors are, in fact, responding to deviations in the data, and adjusting the weights placed

on the more recent observations. We also find that the level of the MSFEs is the lowest for the

long-term yield (10 years), across the forecasting horizons. The largest gains in forecasting

performance occurs for the 1-year yield. We also note that both the learning models improve

upon the constant-coeffi cients model, and the relative MSFEs are shown in the appendix.

In our view, the above results suggest the following implications. First, incorporating

time-variation in the formation of investors’conditional forecasts leads to significant fore-

casting improvements. These results are robust across forecasting horizons, as well as yield

maturities. Second, a large literature has used constant gain learning to model investor

beliefs in theoretical frameworks. This framework may not be able to capture the belief

formation process adequately, even during the Great Moderation. Adopting the endogenous

learning algorithms proposed above provides an intuitive manner to model investor beliefs

during periods of low volatility, as well as of high macroeconomic volatility (as discussed for

the Great Recession below).

5.2.2 Investor Expectations during the Great Recession

As before, the MSFE is used to compare the forecasting performance across different models.

The results for the different models are presented in the third and fourth columns of table

6. Unlike the Great Moderation period, we find that the substantive improvements even

at the 10-year yield across the forecasting horizons. The other main observation is that

the MSFEs are smaller for the Great Recession period, which we attribute to the smaller

data sample period. Even for the periods of higher macroeconomic volatility, the constant
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gain learning approach is unable to capture the shifts in beliefs as done by the endogenous

learning mechanism. The analysis of monetary policy actions through the lens of these

CGL frameworks, may therefore, be an incomplete representation of investors’conditional

forecasts.

Yield Great Moderation Great Recession

Maturity MSFE-CGL MSFE-EGL MSFE-CGL MSFE-EGL

Forecasting horizon h = 1 month

1 year 5.762 4.235∗ 0.438 0.401

5 years 3.913 3.031∗ 1.143 0.755∗

10 years 2.987 2.634 2.329 1.836∗

Forecasting horizon h = 3 months

1 year 6.499 5.982 0.445 0.392∗

5 years 4.130 3.731∗ 0.941 0.688∗

10 years 2.615 2.405 2.205 1.615∗

Forecasting horizon h = 6 months

1 year 6.427 5.456∗ 0.284 0.253

5 years 3.851 3.628 0.884 0.796∗

10 years 2.407 2.280∗ 2.200 1.836∗

Table 6: Evaluating the Conditional Forecasts

Note: These are the mean square forecast error (MSFE) values for constant gain (CGL) and

endogenous gain learning (EGL) models, at the three forecasting horizons. The starred values here

show the EGL forecasts that are statistically superior to CGL, as implied by the Diebold-Mariano

test. The null hypothesis of the test is that the forecasts are statistically indistinguishable.

5.2.3 Investor Expectations from TIPS Yields

We also use data from Treasury Inflation Protected Securities (TIPS) to estimate the learn-

ing parameters for real yields. The strategy for estimating the parameters mechanisms for
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these TIPS yields is the same as followed above. We use the factors estimated by Gürkay-

nak, Sack and Wright (2010) However, only the 5- and 10-year yield data is used in the

estimation exercise. Given the shorter data sample for TIPS, the estimates are presented

for the sample period August 24, 2004 to June 30, 2008. The comparative forecast results

are presented in table 9 (the Diebold-Mariano test statistics are used to indicate statistically

superior forecasts), and the corresponding optimal gains are shown in tables 7 and 8. As for

the nominal yields, the MSFEs suggest that the endogenous learning mechanism generates

substantial improvements in the conditional forecasts, relative to the constant gain process.

The optimal gains for the endogenous learning scheme suggest that investors are revising

their expectations about the level and slope factors of the 5-year TIPS yields much less than

the nominal 5-year counterparts for the Great Moderation period. On the other hand, for

the 10-year conditional forecasts, both the TIPS and nominal yields suggest that investors

are taking new information into account very slowly.
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Optimal Values of Gain Parameters

Factors CGL EGL

ḡ ḡsf k

Forecasting horizon h = 1 month

β0 0.071 0.005 0.004 17

β1 0.134 0.138 0.004 17

β2 0.103 0.023 -0.020 17

β3 0.094 0.010 0.006 17

Forecasting horizon h = 3 months

β0 0.017 0.069 0.011 51

β1 0.039 0.097 0.001 51

β2 0.014 0.089 0.010 51

β3 0.022 0.094 -0.022 51

Forecasting horizon h = 6 months

β0 0.062 0.000 0.006 123

β1 0.103 0.094 0.036 123

β2 0.049 0.008 -0.008 123

β3 0.086 0.010 0.011 123

Table 7: Optimal Values of the Gain Parameter for TIPS Yields

Note: These are the optimal gain values for constant gain (CGL) and endogenous gain (EGL),

for the TIPS five-year yields, for the 2004-2008 sample period.
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Optimal Values of Gain Parameters

Factors CGL EGL

ḡ ḡsf k

Forecasting horizon h = 1 month

β0 0.130 0.000 0.006 13

β1 0.131 0.106 0.011 13

β2 0.119 0.027 -0.021 13

β3 0.114 0.001 0.014 13

Forecasting horizon h = 3 months

β0 0.000 0.000 0.004 52

β1 0.002 0.092 0.013 52

β2 0.001 0.110 0.018 52

β3 0.039 0.002 0.012 52

Forecasting horizon h = 6 months

β0 0.000 0.000 0.006 125

β1 0.004 0.161 -0.011 125

β2 0.002 0.139 0.028 125

β3 0.033 0.098 0.036 125

Table 8: Optimal Values of the Gain Parameter

Note: These are the optimal gain values for constant gain (CGL) and endogenous gain with

(EGL), for the TIPS ten-year yields, for the 2004-2008 sample period.
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Yield MSFE

Maturity MSFE-CGL MSFE-EGL

Forecasting horizon h = 1 month

5 years 0.958 0.862

10 years 2.525 2.092∗

Forecasting horizon h = 3 months

5 years 0.967 0.960

10 years 2.234 2.128

Forecasting horizon h = 6 months

5 years 0.851 0.808∗

10 years 1.734 1.206∗

Table 9: Evaluating the Conditional Forecasts for TIPS Yields

Note: These are the mean square forecast error (MSFE) values for constant gain (CGL) and

endogenous gain learning (EGL) models, at the three forecasting horizons, for TIPS yields. The

starred values here show the EGL forecasts that are statistically superior to CGL, as implied by

the Diebold-Mariano test. The null hypothesis of the test is that the forecasts are statistically

indistinguishable.

6 Further Tests of the Learning Models

In the following section, we use two other metrics to evaluate the learning models. We first

investigate the forecast errors implied by the CGL and EGL models with respect to the

rationality tests constructed in section 3.1 above. Next, we use the random walk model to

construct out-of-sample forecasts, and compare these with the equivalent forecasts from the

learning framework. In the accompanying appendix, we also compare the performance of

the learning models with the Diebold and Li (2006) model20.

20For this exercise, we use the Fama-Bliss monthly yields for estimating the three-factor version of the
Nelson-Siegel (1987) yield curve model. The out-of-sample learning forecasts are then constructed, and
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6.1 Forecast Errors from the Learning Models

In section 3.1 above, we examined the performance of the forecast errors obtained from the

constant-coeffi cients model, with respect to a series of rationality tests. In this section, we

consider how the forecast errors obtained from the learning models perform in these tests21.

The results from the constant gain and endogenous gain learning models are shown in tables

10 and 11, and we discuss the test-wise results below.

For the first test, whether the forecast errors are unbiased, both the learning algorithms

outperform the constant-coeffi cients model. The coeffi cients for the intercept parameter are

either not significant or the size of the coeffi cients is smaller. The exception here is the 1-

and 3-month ahead forecasts for the 5-year yield.

The second test measures whether the forecast errors are effi cient. In terms of the slope

coeffi cient, that is, whether the forecast errors are predicted by the forecasts themselves,

the learning models also do better. For the 1- and 5-year yields, this is evident across the

three forecasting horizons. For the 10-year yield, the improvement is evident at the 1-month

horizon; the size of the slope coeffi cients is similar to the constant coeffi cients model at the

3- and 6-month horizon (for both constant and endogenous learning models).

Finally, the third test measures whether the forecast errors are systematic. For the 1-

year yield, the slope coeffi cients of both the learning models are statistically insignificant, or

smaller than the constant coeffi cients model. For the 5-year yield, learning models outper-

form the model at the 1-month horizon. For the 10-year yield, a similar pattern in observed

in the intercept coeffi cients (for all forecasting horizons), and the slope coeffi cients for the

1-month forecasting horizon. These results suggest that the forecast errors from the learning

models significantly improve upon the constant-coeffi cients model.

compared with those implied by the Diebold-Li model.
21These are the in-sample forecast errors for the learning model, based on the gains estimated for the

Great Moderation period.
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Yield h = 1 month h = 3 months h = 6 months

Maturity α β α β α β

Test 1: yt+h − Etyt+h = α + errort

1 year -1.5849∗
(0.12)

- -1.6938∗
(0.12)

- -1.6316∗
(0.17)

-

5 years -0.7037∗
(0.21)

- -0.6571∗
(0.19)

- -0.7573∗
(0.22)

-

10 years 0.0437
(0.28)

- -0.1691
(0.23)

- 0.0733
(0.04)

-

Test 2: yt+h − Etyt+h = α + βEtyt+h + errort

1 year -0.5540
(0.92)

-0.1230
(0.10)

-0.8119
(1.01)

-0.1018
(0.11)

2.3918
(0.98)

-0.4716∗
(0.11)

5 years 3.7053∗
(0.43)

-0.7335∗
(0.04)

3.3985∗
(0.45)

-0.6985∗
(0.05)

3.6435∗
(0.46)

-0.7257∗
(0.05)

10 years 4.3957∗
(0.30)

-0.8675∗
(0.03)

4.6441∗
(0.29)

-0.7803∗
(0.03)

3.4918∗
(0.29)

-0.8784∗
(0.03)

Test 3: yt+h − Etyt+h = α + β (Etyt+h − Et−1yt+h) + errort

1 year -1.5977∗
(0.12)

-0.3463
(0.16)

-1.6999∗
(0.12)

-0.3902
(0.18)

-1.6964∗
(0.13)

-0.4478
(0.11)

5 years -0.5283∗
(0.08)

-0.3768∗
(0.12)

-0.5546∗
(0.17)

-0.3740∗
(0.11)

-0.5764∗
(0.17)

-0.4730∗
(0.11)

10 years 0.0893
(0.26)

-0.4454∗
(0.12)

-0.1686
(0.22)

-0.2528
(0.03)

0.1414
(0.26)

-0.5189∗
(0.11)

Table 10: Testing Forecast Errors for Nominal Yield Curve Factors

Note: The above coeffi cient estimates are reported for the CGL yields, at the three forecasting

horizons. The standard errors are shown for the corresponding coeffi cients in brackets.
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Yield h = 1 month h = 3 months h = 6 months

Maturity α β α β α β

Test 1: yt+h − Etyt+h = α + errort

1 year -1.6505∗
(0.11)

- -1.6501∗
(0.12)

- -1.7223∗
(0.15)

-

5 years -0.6424∗
(0.20)

- -0.6318∗
(0.18)

- -0.6802∗
(0.21)

-

10 years 0.1095
(0.27)

- -0.1695
(0.22)

- 0.1171
(0.28)

-

Test 2: yt+h − Etyt+h = α + βEtyt+h + errort

1 year -1.5699
(0.98)

-0.0093
(0.11)

-1.2729
(1.01)

-0.0395
(0.11)

2.0900
(0.86)

-0.4387∗
(0.09)

5 years 3.5313∗
(0.42)

-0.7119∗
(0.04)

3.4092∗
(0.44)

-0.6996∗
(0.04)

3.4142∗
(0.43)

-0.6962∗
(0.04)

10 years 4.3677∗
(0.30)

-0.8631∗
(0.03)

4.7532∗
(0.30)

-0.7855∗
(0.03)

4.4611∗
(0.29)

-0.8741∗
(0.03)

Test 3: yt+h − Etyt+h = α + β (Etyt+h − Et−1yt+h) + errort

1 year -1.6571∗
(0.11)

-0.4194
(0.17)

-1.6222
(0.12)

-0.3989∗
(0.14)

-1.7339∗
(0.13)

-0.4966∗
(0.09)

5 years -0.5357∗
(0.17)

-0.4330∗
(0.10)

-0.5935∗
(0.17)

-0.4232∗
(0.11)

-0.4948∗
(0.16)

-0.4695∗
(0.09)

10 years 0.1558
(0.26)

-0.4542∗
(0.12)

0.2231
(0.21)

-0.3761∗
(0.13)

0.1765
(0.26)

-0.4922∗
(0.10)

Table 11: Testing Forecast Errors for Nominal Yield Curve Factors

Note: The above coeffi cient estimates are reported for the EGL yields, at the three forecasting

horizons. The standard errors are shown for the corresponding coeffi cients in brackets.
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6.2 Forecast Performance relative to the Random Walk Model

We compare the out-of-sample forecasting performance of the learning models with the

random walk model. As daily yields are very persistent, the random walk has been shown

to be diffi cult to beat in out-of-sample forecasts. We investigate the out-of-sample forecasts

for the Great Moderation period below.

The random walk model implies a "no-change" forecast for the individual yields. In

this case, the h−day ahead forecast of the n−period yield in time t is simply the time t
observation. For the learning models during the Great Moderation period, the sample period

from January 1980 to December 1992 is used to find the optimal constant gain, as well as

the parameters of the endogenous learning process as noted in the estimation section 5.1

above. The out-of-sample forecasts are constructed for the yield maturities at the different

forecasting horizons for the period January to December 1993. Table 12 presents the MSFEs

of the learning models, as a fraction of the MSFE of the random walk model. In this table,

the Diebold-Mariano test is used to compare the forecasting performance of the learning

models relative to the random walk. When the ratio of the MSFEs is smaller than one, then

the respective learning model predicts better out-of-sample forecasts than the random walk,

and the starred values indicate that this improvement is statistically significant according to

the Diebold-Mariano test.

The results indicate that at the 1-month forecasting horizon, there are no significant

improvements in forecasting performance of the learning models, relative to the random

walk model. The dominance of the random walk model at the short forecasting horizon has

been repeatedly found in the literature (some examples include Moench (2008), Chen and

Niu (2014) and Xiang and Zhu (2013)). At the longer forecasting horizons, however, the

learning models outperform the random walk model in a statistically significant manner.
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Yield Great Moderation

Maturity MSFE CGL/RW MSFE EGL/RW

Forecasting horizon h = 1 month

1 year 1.3525 1.3196

5 years 1.0091 1.0079

10 years 1.0147 1.0799

Forecasting horizon h = 3 months

1 year 1.0256 0.9443*

5 years 0.9377* 0.9285*

10 years 0.9491 1.0435

Forecasting horizon h = 6 months

1 year 1.2500 0.9401*

5 years 0.8911* 0.9374*

10 years 0.9175* 0.8764*

Table 12: Evaluating the Conditional Forecasts

Note: These are the ratios of the mean square forecast error (MSFE) values for constant gain and

endogenous learning models relative to the random walk model, at the three forecasting horizons.

A value less than one indicates that the learning model performs better. Statistical significance

of an improved forecast is measured using the Diebold-Mariano test. The starred values indicate

significance at the 10% level.

7 Applying the Learning Mechanisms

Given the above findings on the superior performance of the endogenous learning mechanism,

we investigate the implication of this process for forming conditional forecasts using inflation

expectations and survey data on expected excess returns.
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7.1 Inflation Expectations

Given our estimation of the conditional forecasts for the nominal and TIPS yields, we further

examine the inflation expectations implied by the difference of the conditional forecasts

between the nominal and TIPS yields. The evolution of inflation expectations for the 5-year

and 10-year horizon are presented in figures 1 and 2.

The 5- and 10-year inflation forecasts implied by the endogenous learning mechanism

show several interesting features; these are reported for the three different forecast horizons

considered. From the 5-year figures, we note that until the end of 2006, the inflation forecasts

for the different forecasting horizons move in tandem. However, starting in early 2007, the

3- and 6-month forecasts begin to diverge from the 1-month forecasts. By the end of 2007,

these begin to move together again, but are marked by a sharp increase in the volatility. This

increase in volatility is also mirrored in the 10-year inflation forecasts. These results suggest

that before the start of the financial crisis, the 5- and 10-year inflation forecasts of market

investors moved together across different forecast horizons, and showed very little variance.

However, as the financial upheaval began to take root in early 2007, investors became much

more uncertain about inflation in the longer horizons (3- and 6-month). During the first

period of the crisis (December 2007 to June 2008), the increased market uncertainty is

reflected in the implied inflation forecasts.

Given these inflation expectations from the endogenous learning model, we further in-

vestigate the correlation of the forecasts with survey expectations. We consider the inflation

expectations derived from the Federal Reserve Bank of Cleveland model of inflation expec-

tations and the Survey of Professional Forecasters. The Cleveland Fed model is an affi ne

model of the nominal and real term structures, which uses data on inflation swap rates, nom-

inal Treasury yields, and survey forecasts of inflation for estimating the model parameters

(Haubrich, Pennacchi and Ritchken, 2012). The implied 5- and 10-year inflation forecasts

are based on monthly data. For the August 2004 - June 2008 period, the correlation between

the 5-year Cleveland Fed inflation forecasts and those generated by the endogenous learning

model is 0.37 and the correlation with the 10-year inflation forecasts is 0.28.22

The Survey of Professional Forecasters reports the forecasts of the annual average rate

of headline CPI inflation for 10 years (the year in which the survey is conducted is also

22For the purpose of the computing the correlations, the end of month endogenous learning inflation
forecasts are considered.
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included). This estimate of long-term inflation expectations has been reported since the last

quarter of 1991. The Survey also began to report 5-year inflation expectations starting in

the third quarter of 2005. As the SPF inflation forecasts are reported every quarter, we only

use the correlation with the 10-year forecasts for the August 2004-June 2008 period. The

correlation for this relatively short time sample is 0.17.
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7.2 Explaining Expected Excess Returns

Predictable patterns in excess returns for nominal yields in the U.S. have been well docu-

mented. Piazzesi, Salomao and Schneider (2015) and Dick, Schmeling and Schrimpf (2013)

document the patterns in excess returns using survey data; the patterns are compared with

those generated by an affi ne factor model in the former approach. In this section, we first

use data from the Survey of Professional Forecasters to estimate the expected excess returns

for the ten-year yield. We compare the implications of analogous expected excess returns

the learning models with the survey returns. We also show the correlations of the learning

model excess returns with the excess returns computed by Cochrane and Piazzesi (2005) to

provide another point of comparison.

The excess return for yield maturity n, at time t, for horizon h is given by:

Et

[
rx

(n+h)
t,t+h

]
= Et

[
p

(n)
t+h

]
− p(n+h)

t − yht , (11)

here pnt is the price of the zero-coupon security at time t of maturity n quarters. Then, in

terms of the yields:

Et

[
rx

(n+h)
t,t+h

]
= −nEt

[
y

(n)
t+h

]
+ (n+ h) y

(n+h)
t − y(h)

t . (12)

With SPF data, we can compute the following, for n = 40 quarters (10 − year yield) and
h = 4 (1-year ahead forecasts)

Et

[
rx

(n+h)
t,t+h

]
= −nEt

[
y

(n)
t+h

]
+ (n+ h) y

(n+h)
t − y(h)

t (13)

= −40Et

[
y

(40)
t+4

]
+ (40 + 4) y

(40+4)
t − y(4)

t .

In order to compute excess returns for the ten-year yield for forecasting horizons h, for the

yields y(40+4)
t and y(4)

t , we use the eleven-year and one-year yield from the Gürkaynak, Sack

and Wright (2007) data. Et
[
y

(10)
t+4

]
is the SPF expected value of the 10-year yield at the

1-year horizon. The same methodology is used to construct expected excess returns from

the learning models; in this case, the Et
[
y

(10)
t+4

]
is computed using the conditional forecasts

described above. In this section, we generate expected excess returns from survey data

and the theoretical models for the period 1993 to 2008. For the learning models, the gain
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parameters are set using the optimal gains derived for the Great Moderation period (we use

the gains shown in table 3).

The evolution of 10-year expected excess returns for the constant and endogenous gain

algorithms are shown in figure 3. For the common sample period, we find that the correlation

of the CGL excess returns, with the SPF excess returns are 0.08. This correlation is 0.18

for the EGL excess return. Thus, the endogenous learning algorithm approximates investor

expected excess returns more closely than the constant-gain learning algorithm.

To provide another benchmark comparison, we also compare the expected excess returns

implied by the learning models with the expected excess returns of Cochrane and Piazzesi

(2005). In this study, the authors find that expected excess returns are time-varying and the

annual returns on 1- to 5-year bonds are well explained by a tent-shaped factor, which is a

linear combination of forward rates. This tent factor is also found to be counter-cyclical. We

construct the 5-year expected excess returns from the learning models, at the comparable

horizon23, and examine the correlation with the 5-year expected excess returns of Cochrane

and Piazzesi (2005). The correlation of the Cochrane and Piazzesi (2005) expected excess

return with the CGL and EGL return is 0.23 and 0.33 respectively. The learning algorithms

also show similar counter-cyclicality as the Cochrane and Piazzesi (2005) returns: for 1993-

2003, the correlation of the Cochrane-Piazzesi 5-year expected excess returns with the cyclical

component of real GDP24 is -0.44; for the CGL and EGL returns, this is -0.43 and -0.41

respectively. Piazzesi, Schneider and Salomao (2015) also document that the expected excess

returns computed from a constant-coeffi cients VAR model, and subjective expected excess

returns (derived from the Blue Chip and Goldsmith-Nagan survey forecasts) show similar

countercyclical behavior.

23Cochrane and Piazzesi (2005) construct expected excess returns using data from 1965 to 2003 (although
their dataset starts in 1952, they consider the later start date due to unreliability of initial data). To compare
with the learning excess returns, we present correlations between 1993 and 2003.
24The real GDP cyclical component is derived using the Hodrick-Prescott filter.
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Figure 3: Evolution of Expected Excess Returns

Note: This figure shows the evolution of expected excess returns for the ten-year yield, derived

from the survey data (from the Survey of Professional Forecasters) and the learning models. The

SPF returns are shown by the black line, the CGL returns by the blue line, and the EGL returns

by the red line.
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8 Conclusion

The empirical analysis conducted above provides macroeconomists and financial economists

a glimpse at how subjective expectations might evolve over time. The specific application

to yield curves, contributes to discussions about central bank policy. Central bankers try

to influence the economy using the short-term yields. Whether the transmission mechanism

(to the long end of the curve) occurs as posited by bankers is still a matter of debate.

While constructing forecasts, if expectations of investors about future short yields are not

rational, and are more persistent than policy makers expect them to be, then long yields

may not move as much as anticipated. The above analysis attempts to show that forecasting

using the Nelson-Siegel-Svensson model of the yield curve can be improved upon by allowing

for a process for factor evolution that incorporates time-varying parameters, instead of a

constant-coeffi cients VAR model. Two alternative models of expectations formation are

suggested here, the constant-gain learning process and endogenous gain, and these are found

to improve upon the forecasting performance relative to the constant-coeffi cients model.

The improvements in forecasting occurs during periods of low volatility, as well as during

the financial crisis period.
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